TABLE OF CONTENTS

MECHANICAL TEMPERATURE CONTROLS

Mechanical Temperature Control General Sequence of Operation	_6
Air Sensing Control	_8
How to Diagnose	9
Checking the Cut In and Cut Out of the Temperature Control	_10
Conditions That Could Cause A Temperature Control Misdiagnosis	_10
Changing Out and Installing a Mechanical Temperature Control	_10
When to Make an Adjustment to a Mechanical Temperature Control	_11
How to Adjust a Mechanical Temperature Control	_11

ELECTRONIC TEMPERATURE CONTROLS

15

5

Dixell Electronic Temperature Control General Sequence of Operation	_17
Using the Dixell Electronic Control	_18
LAE Electronic Temperature Control General Sequence of Operation	_22
How to Diagnose an LAE Electronic Control	_25
Using the LAE Electronic Control	_25
Danfoss Electronic Temperature Control General Sequence of Operation	_47
Using the Danfoss Electronic Control	_50

TYPES OF TEMPERATURE CONTROLS

The cabinet's General Sequence of Operation is determined by the temperature control.

What is a temperature control or thermostat?

A device interposed in a cooling system by which temperature is automatically maintained between certain levels.

MECHANICAL TEMPERATURE CONTROLS

MECHANICAL CONTROLS CYCLE THE COMPRESSOR BY SENSING EITHER AIR TEMPERATURE OR EVAPORATOR COIL TEMPERATURE.

Freezer = Air

ELECTRONIC TEMPERATURE CONTROLS

ELECTRONIC CONTROLS CYCLE THE COMPRESSOR BY SENSING AIR TEMPERATURE.

MECHANICAL TEMPERATURE CONTROLS

MECHANICAL TEMPERATURE CONTROL GENERAL SEQUENCE OF OPERATION AIR SENSING CONTROL How to Diagnose Checking the Cut In and Cut Out of the Temperature Control Conditions That Could Cause A Temperature Control Misdiagnosis Changing Out and Installing a Mechanical Temperature Control When to Make an Adjustment to a Mechanical Temperature Control How to Adjust a Mechanical Temperature Control

MECHANICAL TEMPERATURE CONTROLS

COIL SENSING

An evaporator coil sensing temperature control ensures that the evaporator coil will remain clear of frost and ice by not allowing the compressor to restart until the coil temperature is above the freezing temperature. This is considered an **off cycle defrost**.

AIR SENSING

An air sensing temperature control used in a freezer application will require a defrost cycle with heaters to ensure that the evaporator coil is kept clear of frost and ice.

MECHANICAL TEMPERATURE CONTROL GENERAL SEQUENCE OF OPERATION

MECHANICAL CONTROL REFRIGERATOR GENERAL SEQUENCE OF OPERATION

- I. Cabinet is plugged in.
 - a. Interior lights will illuminate on Glass Door Models only. If lights do not come on verify the light switch is in the "ON" position. Solid door cabinets may or may not have lights that may be controlled by the door switch.
- 2. The compressor and evaporator fans will start if the temperature control is calling for cooling. (If the compressor does not start, verify that the temperature control is not in the "OFF" or "0" position.)
- 3. The temperature control may cycle the compressor and evaporator fan(s) on and off together.
 - a. The temperature control is sensing the evaporator coil temperature.
 - b. The temperature control should be set on the #4 or #5.
 - c. The warmest setting is #1, the coldest is #9, and #0 is the off position.
 - d. The thermometer is designed to read and display a cabinet temperature <u>not a product temperature</u>. The thermometer may reflect the refrigeration cycle swings of up and down temperatures.
 - The most accurate temperature on a cabinet's operation is to verify the product temperature.
- 4. There is not a defrost timer as the temperature control will initiate the off-cycle defrost during each refrigeration cycle.
 - a. At this time, the compressor will and the evaporator fan(s) may turn off. Defrost heaters are not installed on refrigerators and therefore will not be energized.
 - b. After the evaporator coil temperature has been reached, as determined by the temperature control, the compressor will restart.
- 5. There may be a timer located on the condensing unit base. This timer is not used for a defrost event. The timer will change the rotation of the reversing condenser fan motor.

MECHANICAL CONTROL FREEZER GENERAL SEQUENCE OF OPERATION

- I. Cabinet is plugged in.
 - a. Interior lights will illuminate on glass door models only. If lights do not come on, verify the light switch is in the "ON" position. Solid door cabinets may or may not have lights that may be controlled by the door switch.
- 2. The compressor only will start if the temperature control is calling for cooling. (If the compressor does not start, verify that the temperature control is not in the "OFF" or "0" position or the cabinet is not in a defrost event.)
 - a. The evaporator fan(s) will remain off until a specific temperature of the evaporator coil is reached.
- 3. The temperature control may cycle the compressor and evaporator fan(s) on and off together.
 - a. The temperature control is sensing the air temperature.
 - b. The temperature control should be set on the #4 or #5.
 - c. The warmest setting is #1, the coldest is #9, and #0 is the off position.
 - d. The thermometer is designed to read and display a cabinet temperature <u>not a product temperature</u>. The thermometer may reflect the refrigeration cycle swings of up and down temperatures. The most accurate temperature on a cabinet's operation is to verify the product temperature.
- 4. The defrost timer will initiate defrost during specific times of day.
 - a. At this time, the compressor and evaporator fan(s) will turn off and the evaporator coil heater and drain tube heater will be energized. Some cabinets may also change the rotation of the reversing condenser fan motor.
 - b. After the predetermined evaporator coil temperature has been reached or duration for defrost has expired, the compressor will restart and the evaporator fan(s) will remain off until a specific temperature of the evaporator coil is reached.

MECHANICAL CONTROL DELI DISPLAY GENERAL SEQUENCE OF OPERATION

I. Cabinet is plugged in.

- a. Interior lights will illuminate. If lights do not come on verify the light switch is in the "ON" position.
- 2. I. The compressor and evaporator fans will start on a model TCGR if the temperature control is calling for cooling. (If the compressor does not start, verify that the temperature control is not in the "OFF" or "0" position.)
 - 2. The compressor will start on models TSID, TDBD, and TCGG if the temperature control is calling for cooling. (The above 3 models are a gravity style coil design and do not have an evaporator fan motor.)
- 3. The temperature control may cycle the compressor and evaporator fan(s) on and off together.
 - a. The temperature control is sensing the evaporator coil temperature.
 - b. The temperature control should be set on the #4 or #5.
 - c. The warmest setting is #1, the coldest is #9, and #0 is the off position.
 - d. The thermometer is designed to read and display a cabinet temperature <u>not a product temperature</u>. The thermometer may reflect the refrigeration cycle swings of up and down temperatures. The most accurate temperature on a cabinet's operation is to verify the product temperature.
- 4. I. There is not a defrost timer on a model TCGR as the temperature control will initiate the off-cycle defrost during each refrigeration cycle.
 - a) At this time, the compressor will turn off. Defrost heaters are not installed on refrigerators and therefore will not be energized.
 - b) After the evaporator coil temperature has been reached determined by the temperature control, the compressor will restart.
 - 2. The defrost timer will initiate defrost on models TSID, TDBD, and TCGG during specific times of day.
 - a) At this time, the compressor will turn off. No heaters will be energized.
 - b) After the predetermined duration has expired, the compressor will restart.

AIR SENSING CONTROL

Some refrigerators used for special applications may have an air sensing control. These cabinets will run at a temperature where the evaporator coil never has the potential to freeze.

White Wine:45-50 degreesRed Wine / Chocolate:50-55 degrees

HOW TO DIAGNOSE

STEP I - Control must operate within its pre-calibrated range of temperatures.

STEP 2 - *Cut-in* is the ON temperature.

STEP 3 - *Cut-out* is the **OFF** temperature.

NOTE: All temps are at mid-point setting #5. All temps advised have a +/- 2 degree variance.

Confirmed Calibration

TRUE P/N	MFG P/N	APPLICATION	CUT-IN	CUT OUT
800303	9531N376		35	15
800304	9530N1490		-9	-15
800306	9531N251		40	19
800312	9530N1284		-8	-15
800313	9531N335		37	16
800320	9530N1185		33	27
800325	9530N1318	RED WINE, CHOCOLATE	62	55
800335	9530N1376		38	20
800340	9530N1155		26	11
800345	077B1264		-3	-16
800357	9530266		-3	-8
800358	077B1214		-9	-14
800363	9530C311		-3	-13
800366	077B6806		37	17
800368	077B6857		42	23
800369	077B1212		-3	-12
800370	077B1216		-14	-25
800371	077B6863		42	24
800382	077B6856		37	18
800383	077B1227		0	-6
800384	077B1229		25	19
800385	077B1228	WHITE WINE	43	34
800386	077B6871		41	20
800387	077B6887	FLOWER COOLER	39	21
800390	9530N1329	SUPER NOVA	13	8
800393	077B6827		42	21
800395	931N370	HIGH ALTITUDE	40	23
800399	9530C304		0	-5
822212	CAP-075-174R	HEATED		
822213	077B6894		37	22
822214	077B1309		31	17
822223	077B1331		26	9
831931	077B1277		-2	-9
831932	3ART56VAA4		40	18
831987	077B0995	RED WINE, CHOCOLATE	57	50
908854	077B6926		36	10
908975	077B1352		-16	-32
911427	077B1354		38	26
913382	077B1367		-11	-23
917838	077B1369		0	-14
930794	091X9775		42	25
933190	091X9796		42	19
958745	3ART55VAA4		39	18
958747	095X0028		37	
958857	3ART5VAA198		8	-6
959268	3ART55VAA3		40	26
960640	3ART55VAA5		43	20
962728	3ART55VAA6		42	20
963056	3ART55VAA2		39	16

CHECKING THE CUT IN AND CUT OUT OF THE TEMPERATURE CONTROL

COIL SENSING

AIR SENSING

CONDITIONS THAT COULD CAUSE A TEMPERATURE CONTROL MISDIAGNOSIS

- Dirty Condensing Coil
- Bad Door Gasket
- Poor Ventilation / High Ambient Conditions
- Refrigeration System Failure
- Temperature Control Relay

CHANGING OUT AND INSTALLING A MECHANICAL TEMPERATURE CONTROL

WHEN TO MAKE AN ADJUSTMENT TO A MECHANICAL TEMPERATURE CONTROL

We advise to make a mechanical temperature control adjustment only for a high altitude location.

HOW TO ADJUST A MECHANICAL TEMPERATURE CONTROL

OPERATION INSTRUCTIONS:

REQUIRED TOOLS:

• Jewelers Screw Driver (Small Screw Driver)

GE CONTROL INSTRUCTIONS:

The scale to the right may be used as a guide for measuring degrees of rotation required for altitude correction. See Figure 1. The arrows indicate direction of screw rotation. Turn calibration screw clockwise to obtain warmer operating temperatures.

NOTE: Each 1/4 turn of the calibration screw is equal to approximately 2 degrees F. Do not make more than 3/4 turn. After making adjustment, measure temperature during three cycles before adjusting again.

NOTE: Only adjust the screw (small flathead) on the face of the control (next to the cam). See Figure 3. Follow the Altitude Correction Table to the right.

Altitude Correction Table: Calibration Screw Adjusts Both Cut-in and Cut-out Altitude (Feet) **Clockwise Turns** 2000 7/60 3000 11/60 4000 15/60 5000 19/60 23/60 6000 7000 27/60 30/60 8000

INSTALLATION INSTRUCTIONS DANFOSS TEMPERATURE CONTROL ADJUSTMENT FOR HIGH ALTITUDE APPLICATIONS:

REQUIRED TOOLS:

- Allen Wrench (5/64'')
- Torx Screw (T-7)

TERMS:

Cut-out - Temperature sensed by the controller that shuts the compressor off.

Cut-in - Temperature sensed by the controller that turns the compressor on.

INSTRUCTIONS: DANFOSS TEMPERATURE CONTROL ADJUSTMENT FOR HIGH ALTITUDE APPLICATIONS

STEP I - Unplug cooler.

STEP 2 - Remove the screws that secure the temperature control to the inset box.

STEP 3 - To make these adjustments it may be necessary to remove the temperature control from the housing.

NOTE: You may have to remove the wires attached to the control. Take note as to which wire is on which spade terminal.

STEP 4 - Pull out gently from cabinet.

NOTE: Mechanical temperature controllers are affected when functioning at high altitude. The cut-in and cut-out temperatures will be colder than when the controller functions closer to sea level.

STEP 5 - For high elevation installations, it may be necessary to "warm-up" the set points. To make the adjustment, insert the appropriate tool in each adjustment screw and turn I/4 of a revolution clockwise (to the right). This procedure will adjust both the cut-in and cut-out about 2°F warmer.

STEP 6 - Make sure to reconnect the wires to the proper spade terminal when reinstalling.

INSTALLATION INSTRUCTIONS TEMPERATURE CONTROL ALTITUDE ADJUSTMENT:

REQUIRED TOOLS:

- Allen Wrench (5/64'')
- Torx Screw (T-7)

The scale to the right may be used as a guide for measuring degrees of rotation required for altitude correction. The arrows indicate direction of screw rotation. See Figure 1.

IMPORTANT: Upright models ordered with "High Altitude" temperature controls are pre-calibrated and do not require adjustment.

INSTRUCTIONS: CUTLER HAMMER TEMPERATURE CONTROL ALTITUDE ADJUSTMENT

- **STEP I** Unplug cooler.
- **STEP 2** Turn the temperature control to the "9" position.
- **STEP 3** Remove the screws that secure the mounting plate to the evaporator top. See Figure 2.
- STEP 4 Pull control down gently from housing.
- STEP 5 Turn screws counterclockwise (CCW).
- **STEP 6** Reassemble to cooler housing and return the temperature control to the "5" position.

ELECTRONIC TEMPERATURE CONTROLS

DIXELL ELECTRONIC TEMPERATURE CONTROL GENERAL SEQUENCE OF OPERATION USING THE DIXELL ELECTRONIC CONTROL LAE ELECTRONIC TEMPERATURE CONTROL GENERAL SEQUENCE OF OPERATION HOW TO DIAGNOSE AN LAE CONTROL USING THE LAE ELECTRONIC CONTROL DANFOSS ELECTRONIC TEMPERATURE CONTROL GENERAL SEQUENCE OF OPERATION HOW TO DIAGNOSE A DANFOSS CONTROL USING THE DANFOSS ELECTRONIC CONTROL

ELECTRONIC TEMPERATURE CONTROLS

(Control version will vary with model and age of cabinet.)

*

۲

prg

🐮 SET

Direl

DIXELL:

- p1 = supply air (thermostat) p2 = coil / copper line (defrost)
- p3 = return air (display)

p3 probe is not installed and / or activated in all applications if p3 is not installed and / or activated, the display probe is p1.

DIXELL PROBES

- 12 Thermostat
- 13 Defrost
- **14** Display

LAE:

tI = supply air / return air* (thermostat)
t2 = coil / copper line (defrost)
t3 = return air / supply air* (display)

t3 probe is not installed and / or activated in all applications if t3 is not installed and / or activated, the display probe is t1.

* STA, STG, STM, STR Models.

DANFOSS:

control probe = return air defrost probe = coil

NOTE: An electronic control with an air sensing temperature probe (refrigerator and freezer) will require a defrost cycle to ensure that the evaporator coil is kept clear of frost and ice.

DANFOSS ELECTRONIC PROBES

DIXELL ELECTRONIC TEMPERATURE CONTROL GENERAL SEQUENCE OF OPERATION

- pl = supply air (thermostat)
 p2 = coil / copper line (defrost)
- p3 = return air (display)

p3 probe is not installed and / or activated in all applications with p3 is not installed and / or activated, the display probe is p1.

DIXELL ELECTRONIC CONTROL GENERAL SEQUENCE OF OPERATION

- I. Cabinet is plugged in.
 - a. Display will illuminate.
 - b. Interior lights will illuminate on Glass Door Models only. If lights do not come on verify the light switch is in the "ON" position. Solid door cabinets may or may not have lights that may be controlled by the door switch.
 - c. Evaporator motors will come on (refrigerator only).
- 2. After the Dixell control preprogrammed time delay of 3-5 minutes, the compressor and freezer evaporator fan(s) will start if the control is calling for cooling.
- 3. The Dixell control will cycle the compressor but may also cycle the evaporator fan(s) on and off determined by the Set-Point and Differential temperatures.
 - a. The Set-Point is the <u>adjustable</u> preprogrammed temperature which shuts off the compressor and evaporator fan(s). This is not the programmed cabinet temperature.
 - b. The Differential is the <u>non adjustable</u> preprogrammed temperature that is added to the Set-Point temperature that will start the compressor and evaporator fan(s).
 - c. The Dixell control is designed to read and display a cabinet temperature <u>not a product temperature</u>. This cabinet temperature may reflect the refrigeration cycle of the Set-Point and it's Differential. The most accurate temperature on a cabinets operation is to verify the product temperature.

Example: If the Set-Point is $33^{\circ}F/1^{\circ}C$ and the Differential is $8^{\circ}F/4^{\circ}C$ (Set-Point) $33^{\circ}F + 8$ (Differential) = $41^{\circ}F$

Or

(Set-Point) $1^{\circ}C + 4$ (Differential) = $5^{\circ}C$ The compressor will cycle off $33^{\circ}F/1^{\circ}C$ and back on at $41^{\circ}F/5^{\circ}C$

- 4. The Dixell control may be preprogrammed to initiate defrost at specific intervals that start when the cabinet is plugged in.
 - a. At this time the "dEF" may appear on the display and compressor will turn off until a preprogrammed temperature or duration is reached. During this time, for freezers only, evaporator fan(s) will also turn off and the coil heater and drain tube heaters will also be energized. Some cabinets may also change the rotation of the reversing condenser fan motor.
 - b. After the preprogrammed temperature has been reached or duration for defrost has expired, there may be a short delay for both the compressor and evaporator fans to restart. At this time "dEF" may still appear on the display for a short time.

DIGITAL TEMPERATURE CONTROL COMMANDS:

Use of LED: Each LED function is described in the table below.

Key Combinations:

🖎 + 🛇 🕞 To lock & unlock the keyboard. $\mathbf{m}_{+} \mathbf{r}_{+} \mathbf{r}_{+} \mathbf{r}_{+}$ To enter the programming mode.

 \mathbf{M}_{+} \mathbf{M}_{+} To exit the programming mode.

HOW TO START A MANUAL DEFROST:

STEP I - Push the (DEFROST) key for more than (2) seconds and a manual defrost will start.

STEP 2 - By pushing the (ON/OFF) key, the instrument shows "OFF" for 5 seconds and then the **ON/OFF LED** switch **ON**.

USING THE DIXELL ELECTRONIC CONTROL

HOW TO LOCK / UNLOCK THE KEYS:

STEP I - Press the (UP) and (DOWN) keys at the same time for more than (3) seconds.

STEP 2 - The "POF" message will be displayed if the keyboard is locked. At this point, it is only possible to view the set point, MAXIMUM / MINIMUM temperature stored.

STEP 3 - To unlock the keyboard, press the (UP) and (DOWN) keys at the same time for more than (3) seconds. The "Pon" message will be displayed.

	LED	MODE	Function
	*	ON	The compressor is running
	*	FLASHING	Programming Phase (flashing with LED \$ Anti-short cycle delay enabled
	5	ON	The fan is running
	5	FLASHING	Programming Phase (flashing with LED 🔆)
Drue.	*	ON	The defrost is enabled

Alarm Signals

Message	Cause	Outputs	
P1	Thermostat probe failure	Alarm output ON; Compressor output according to parameters "COn" and "COF"	
P2	Evaporator probe failure	Alarm output ON; Other outputs unchanged	
P3	Display probe failure	Alarm output ON; Other outputs unchanged	
"HA"	Maximum temperature alarm	Alarm output ON; Other outputs unchanged	
"LA"	Minimum temperature alarm	Alarm output ON; Other outputs unchanged	
"EE"	Data or memory failure	Alarm output ON; Other outputs unchanged	
"dA"	Door switch alarm	Alarm output ON; Other outputs unchanged	
"EAL"	External alarm	Alarm output ON; Other outputs unchanged	
"bAL"	Serious external alarm	Alarm output ON; Other outputs OFF	
"PAL"	Pressure switch alarm	Alarm output ON; Other outputs OFF	

NOTE: To silence alarm, press any button on keypad.

THE SET POINT IS WHERE THE COMPRESSOR WILL SHUT OFF.

HOW TO SEE AND MODIFY THE SET POINT:

STEP I - Model XW60VS push and immediately release the **(SET)** key. Model XR160C push and hold the **(SET)** key: The display will show the **(SET)** point value.

STEP 2 - The (SET LED) will start blinking.

STEP 3 - To change the **(SET)** value, push the **(UP)** or **(DOWN)** arrows within (10) seconds.

STEP 4 - To memorize the new set point value, push the **(SET)** key again or wait (10) seconds.

THE LOCAL DISPLAY SHOWS WHICH PROBE IS READING.

HOW TO SEE "LOD" LOCAL DISPLAY:

STEP I - Press and hold the (SET) and (DOWN) arrows at the same time for (7-12) seconds.

STEP 2 - You should then see (HY).

STEP 3 - Release the keys.

STEP 4 - Press the down arrow until you see the letters (LOD).

STEP 5 - Press the **(SET)** button. You should see **PI, P2, P3.** This is the probe used for the display. (All probes may not be used in some applications). To change, press the **(UP / DOWN)** arrow to set a new number and then push the **(SET)** button to save these changes.

Wait 10 seconds for control to display temperature.

THE INTERVAL BETWEEN DEFROST TERMINATION IS THE TIME BETWEEN EACH DEFROST CYCLE.

NOTE: This interval is started when the cabinet is plugged in or after initiate of manual defrost.

HOW TO SEE "idF" INTERVAL BETWEEN DEFROST:

STEP I - Press and hold the (SET) and (DOWN) arrows at the same time for (7-12) seconds.

STEP 2 - You should then see (HY).

STEP 3 - Release the keys.

STEP 4 - Press the down arrow until you see the letters "idF".

STEP 5 - Press the **(SET)** button. You should see the number 6. This is time in hours between each defrost cycle. To change, press the **(UP / DOWN)** arrow to set a new number and then push the **(SET)** button to save these changes. Wait 10 seconds for control to display temperature.

NOTE: The interval between defrost termination is the time between each defrost cycle.

THE PROGRAM PARAMETERS CAN BE DOWNLOADED BY THE USE OF A "HOT KEY."

NOTE: These parameters will vary from model to model.

HOW TO DOWNLOAD THE CONTROL PARAMETER:

 $\ensuremath{\textbf{STEP I}}$ - Turn controller in the off position or unplug cabinet.

STEP 2 - Insert "Hot Key" into the back of the controller.

STEP 3 - Turn on controller or plug in cabinet.

STEP 4 - "Hot Key" will download automatically once download is complete. Remove "Hot Key".

Dixell Probe Temperature to Resistance Chart		
Temperaure		Resistance
С	F	K-ohm
-50	-58	329.50
-45	-50	247.70
-40	-40	188.50
-35	-31	144.10
-30	-22	111.30
-25	-12.5	86.43
-20	-4	67.77
-15	5	53.41
-10	14	42.47
-5	23	33.90
0	32	27.28
5	41	22.05
10	50	17.96
15	59	14.69
20	68	12.09
25	77	10.00
30	86	8.31
35	95	6.94
40	104	5.83
45	113	4.91
50	122	4.16
55	131	3.54
60	140	3.02
65	149	2.59
70	158	2.23
75	167	1.92
80	176	1.67
85	185	1.45
90	194	1.27
95	203	1.11
100	212	0.97
105	221	0.86
110	230	0.76

DIXELL PROBES

- **12** Thermostat
- **I3** Defrost
- 14 Display

LAE ELECTRONIC TEMPERATURE CONTROL GENERAL SEQUENCE OF OPERATION

tI = supply air / return air* (thermostat)

t2 = coil / copper line (defrost)

t3 = return air / supply air* (display)

t3 probe is not installed and / or activated in all applications with t3 is not installed and / or activated, the display probe is t1.

LAE ELECTRONIC CONTROL GENERAL SEQUENCE OF OPERATION

I. Cabinet is plugged in.

- a. Display will illuminate.
- b. Interior light will illuminate on Glass Door Models only. Solid door cabinet lights are controlled by the door switch.

* STA, STG, STM, STR Models.

- 2. After the LAE control preprogrammed time delay of up to 6 minutes, the compressor and evaporator fan(s) will start if the control is calling for cooling.
 - a. Control may be already pre-programmed from the factory so at the start of every compressor cycle or during a defrost cycle, the condenser fan(s) will reverse for 30 seconds to blow dirt off the condensing coil.
- 3. The LAE control will cycle the compressor but may also cycle evaporator fan(s) on and off determined by the Set-Point and Differential temperatures.
 - a. The Set-Point is the <u>adjustable</u> preprogrammed temperature which shuts off the compressor and evaporator fan(s). This is not the programmed cabinet temperature.
 - b. The Differential is the <u>non adjustable</u> preprogrammed temperature that is added to the Set-Point temperature that will restart the compressor and evaporator fan(s).
 - c. The LAE control is designed to read and display a cabinet temperature <u>not a product temperature</u>. This cabinet temperature may reflect the refrigeration cycle of the Set-Point and it's Differential. The most accurate temperature on a cabinets operation is to verify the product temperature.

Example: If the Set-Point is $-9^{\circ}F/-23^{\circ}C$ and the Differential is $10^{\circ}F/5^{\circ}C$ (Set-Point) $-9^{\circ}F + 10$ (Differential) = $1^{\circ}F$

Or

$(Set-Point) \ -23^\circ C \ + \ 5 \ (Differential) = -18^\circ C$ The compressor and evaporator fan(s) will cycle off -9°F/-23°C and back on at 1°F/-18°C

- 4. The LAE control may be preprogrammed to initiate defrost by interval or at specific times of day.
 - a. At this time the "dEF" will appear on the display and compressor will turn off until a preprogrammed temperature or duration is reached. During this time for freezers only, evaporator fan(s) will also turn off and the coil heater and drain tube heaters will also be energized. Some cabinets may also change the rotation of the reversing condenser fan motor.
 - b. After the preprogrammed temperature or duration for defrost has been reached there may be a short delay for both the compressor and evaporator fans to restart. At this time "dEF" may still appear on the display for a short time.

LAE MODEL TMW ELECTRONIC CONTROL GENERAL SEQUENCE OF OPERATION

- I. Cabinet is plugged in.
 - a. Display will illuminate.
- 2. After the LAE control preprogrammed time delay of up to 6 minutes, the compressor will start if the control is calling for cooling.
 - a. Control may be already preprogrammed from the factory so at the start of every compressor cycle, the condenser fan(s) will reverse for 30 seconds to blow dirt off the condensing coil.
- 3. The LAE control will cycle the compressor on and off determined by the Set-Point and Differential temperatures.
 - a. The Set-Point is the <u>adjustable</u> preprogrammed temperature which shuts off the compressor and evaporator fan(s). This is not the programmed cabinet temperature.
 - b. The Differential is the <u>non adjustable</u> preprogrammed temperature that is added to the Set-Point temperature that will restart the compressor and evaporator fan(s).
 - c. The LAE control is designed to read and display a cabinet temperature <u>not a product temperature</u>. This cabinet temperature may reflect the refrigeration cycle of the Set-Point and it's Differential. The most accurate temperature on a cabinets operation is to verify the product temperature.

Example: If the Set-Point is $-9^{\circ}F/-23^{\circ}C$ and the Differential is $10^{\circ}F/5^{\circ}C$ (Set-Point) $-9^{\circ}F + 10$ (Differential) = $1^{\circ}F$

Or

$(Set-Point) -23^{\circ}C + 5 \text{ (Differential)} = -18^{\circ}C$ The compressor will cycle off -9°F/-23°C and back on at 1°F/-18°C

4. The LAE control is not and cannot be preprogrammed to initiate defrost, only refrigeration.

a. The cabinet will need to be manually defrosted. Unplug the cabinet or turn the LAE control to "OFF" per LAE instruction sheet. The manual defrost frequency will depend on the units usage, environment, and the amount of frost.

LAE MODEL HEATED CABINET ELECTRONIC CONTROL GENERAL SEQUENCE OF OPERATION

I. Cabinet is plugged in.

a. Display will illuminate.

- 2. The LAE control will energize the heat elements if the control is calling for heat.
- 3. The LAE control will cycle the heating elements on and off determined by the Set-Point and Differential temperatures.
 - a. The Set-Point is the <u>adjustable</u> preprogrammed temperature which de-energizes the heat elements. This is not the programmed cabinet temperature.
 - b. The Differential is the <u>non adjustable</u> preprogrammed temperature that is added to the Set-Point temperature that will re-energize the heat elements.
 - c. The LAE control is designed to read and display a cabinet temperature **not a product temperature**. This cabinet temperature may reflect the heating cycle of the Set-Point and it's Differential. The most accurate temperature on a cabinets operation is to verify the product temperature.

Example: If the Set-Point is $180^{\circ}F/82.2^{\circ}C$ and the Differential is $1^{\circ}F/.56^{\circ}C$ (Set-Point) $180^{\circ}F + 1$ (Differential) = $181^{\circ}F$

Or

(Set-Point) 82.2°C + .56 (Differential) = 82.76°C The heating elements will cycle on 180°F/82.2°C and back off at 181°F/82.76°C

HOW TO DIAGNOSE AN LAE ELECTRONIC CONTROL

Indicator lights for Refrigeration/Heating Mode, Fan Operation, Defrost Mode.

USING THE LAE ELECTRONIC CONTROL

LOCKING AND UNLOCKING THE LAE CONTROLLER:

WHY: Locking of control is necessary to prevent changes to program that may affect cabinet operation.

HOW TO LOCK AND UNLOCK LAE CONTROLLER:

STEP I - To change lock setting press and release the Info button **i .** "tl" will appear. See image 1.

STEP 2 - Press the Down button (1) until "Loc" appears. See image 2.

STEP 3 - While pressing and holding the Info button **↓** press the Up **▲M** or Down **③** button to change the lock settings. If "no" appears, the controller is unlocked. If "yes" appears, the controller is locked. See images 3 and 4.

STEP 4 - Once the lock setting has been set correctly release the info button **i**. Wait 5 seconds for the display to show temperature. See image 5.

Image 3: If "no" appears on screen, the controller is unlocked.

Image 4: If "yes" appears on screen, the controller is locked.

HOW TO TURN OFF THE LAE ELECTRONIC CONTROL:

May need to unlock control.

WHY: Turning off the control will deactivate all electrical components.

CAUTION: Turning off the control will not shut off power to the cabinet. Cabinet must be unplugged prior to any repair.

HOW TO TURN OFF THE LAE ELECTRONIC CONTROLLER:

STEP I - To turn off control, press and hold the Stand-by button **x**⁽¹⁾ until "OFF" appears. Release Stand-by button. See Image 2.

STEP 2 - To turn on control, repeat prior steps and a temperature will appear.

TURNING THE GLASS DOOR MODEL LIGHTS ON AND OFF:

May need to unlock control.

WHY: Light may be controlled by LAE Controller or interior light switch.

HOW TO TURN THE GLASS DOOR MODEL LIGHT ON AND OFF:

STEP I - To control interior / sign lights by the LAE Controller, press and release the Manual Activation button **AM**.

STEP 2 - To control interior / sign lights by the interior door switch, depress the rocker switch to the "ON" position. Light switch is located on inside top right of the ceiling.

(Solid Door model lights are controlled by a door switch)

CHANGING THE "SET POINT":

May need to unlock control.

WHY: The set point is the temperature at which the compressor will shut off.

NOTE: The "set point" *IS NOT* the cabinet holding temperature.

HOW TO CHANGE THE "SET POINT":

STEP I - To see the set point, press and hold the Info button **i**. See image I.

STEP 2 - While still holding the Info button **i**, press the Up**▲M** or Down **i v** button to change the "set point".

STEP 3 - Once the "set point" has been set correctly release the Info button **i •**. The display will show temperature. See image 2.

INITIATE A MANUAL DEFROST:

May need to unlock control.

WHY: A one time additional defrost may be necessary to clear accumulated frost / ice from evaporator coil.

HOW TO INITIATE A MANUAL DEFROST:

The method to initiate a manual defrost is determined by the Defrost Mode Parameter "DTM" preprogrammed in the controller.

REGULAR TIME DEFROST (TIM)

If controller is preprogrammed for "TIM", press and release the Manual Defrost button () until "dEF" appears.

REAL TIME CLOCK (RTC)

If controller is preprogrammed for "RTC" press the and hold the Manual Defrost button (a) for 5 seconds until "dh1" appears. Release the Manual Defrost button (a) and then press and hold for an additional 5 seconds until "dEF" appears.

NOTE: Defrost will only terminate once a specific preset temperature or a preset time duration is reached.

CHANGING "DEFROST INTERVALS":

May need to unlock control.

This can only be changed if defrost mode parameter "DFM" is set for "TIM".

WHY: The defrost interval is the time duration between defrost cycles. The defrost interval time starts when the cabinet is supplied power or after a manual defrost.

HOW TO CHANGE "DEFROST INTERVALS":

STEP I - To see the set point, press and hold the Info button **i** and the Stand-by button **x** at the same time. "ScL" will appear. See image I.

NOTE: If using BIT25 controller "SPL" will appear. See image 2.

STEP 2 - Push the Up button **M** until "dFt" appears. See image 3.

STEP 3 - Press and hold the Info button **i** to see the defrost interval time. See image 4

STEP 4 - While pressing and holding the Info button **i ◆**, press the Up **▲M** or Down **③** button to change the defrost interval times (higher the number the less frequent the cabinet will defrost).

STEP 5 - Once the defrost interval time has been changed, release the Info button **i**.

STEP 6 - Wait 30 seconds for the display to show temperature. See image 5.

HOW TO CHANGE DISPLAY READOUT FROM FAHRENHEIT TO CELSIUS:

May need to unlock control.

This can only be changed with the LAE model BRI version of the control.

WHY: Changing readout will assist with customer application.

HOW TO CHANGE DISPLAY READOUT FROM FAHRENHEIT TO CELSIUS:

STEP I - To change the display, press and hold the Info button **i** and the Stand-by button **x** at the same time. "MdL" will appear. See image I.

STEP 2 - Push the Down button (1) until "ScL" appears. See image 2.

STEP 3 - Press and hold the Info button **i** to see the "readout scale". See image 3.

STEP 4 - While pressing and holding the Info button i ◆, press the up ▲ M or down (b → button to change the "readout scale".
See image 4.

STEP 5 - Once the "readout scale" has been changed, release the info button **i**

STEP 6 - Wait 30 seconds for the display to show temperature. See image 5.

DISPLAYING TEMPERATURE PROBES, TI, T2, T3:

WHY: To display temperature probe readings in different locations of the cabinet.

HOW TO DISPLAY PROBE TEMPERATURES:

STEP I - To display TI temperature, press and release the info button **I**♦. "tI" will appear. See image I.

STEP 2 - Press and hold the info button **i**. This is the temperature of the TI Probe. See image 2.

STEP 3 - By releasing the info button **i**, "t2" will appear. Press and hold the info button **i** to display the temperature of the T2 probe.

STEP 4 - By releasing the info button **i** again, "t3" will appear. Press and hold the info button **i** to display the temperature of the T3 probe. (If probe T3 is not activated, "t3" will not appear of the display.)

DISPLAY CODES

DISPLAY	
dEF Defrost in progress	h, Room high temperature alarm
oFF Controller in stand-by	Lo Room low temperature alarm
do Door open alarm	E / Probe T1 failure
E I Instant probe 1 temperature	E2 Probe T2 failure
<i>Ł</i> ∂ Instant probe 2 temperature	E3 Probe T3 failure
<i>E∃</i> Instant probe 3 temperature	Eh, Maximum probe 1 temperature recorded
ā a Minutes of the Real Time Clock	Lo Minimum probe 1 temperature recorded
hr 5 Hours of the Real Time Clock	Loc Keypad state lock

LAE Controller Parameter Settings for Celsius

For every model / version of the LAE controller,

ALL parameters with a formula shown need to be

converted for Celsius applications.

EXCEPT MODEL: BR1

Example:

If current SPL is set for 20 degrees F the formula is (X-32) / 1.8

(20-32) / 1.8 = -6.7 Celsius

		AR2-28
SCL	1C	
SPL	(X-32) / 1.8	
SPH	(X-32) / 1.8	
SP	(X-32) / 1.8	
C-H		
HYS	(X) / 1.8	
CRT		
CT1		
CT2		
CSD		
DFM		
DFT		
DH1		
DH2		
DH3		
DH4		
DH5		
DH6		
DLI	(X-32) / 1.8	
DTO		
DTY		
DPD		4
DRN		
DDM		
DDY		
FID		
FDD	(X-32) / 1.8	
FTO		
FCM		
FDT	(X) / 1.8	
FDH	(X) / 1.8	
FT1		
FT2		
FT3		
ATM		
ALA	(X-32) / 1.8	
AHA	(X-32) / 1.8	
ALR	(X) / 1.8	
AHR	(X) / 1.8	
ATI		
ATD		

ADO	
AHM	
AHT	(X-32) / 1.8
ACC	
IISM	
IISL	(X-32) / 1.8
IISH	(X-32) / 1.8
IISP	(X-32) / 1.8
IIHY	(X) / 1.8
lifc	
HDS	
lIDF	
SB	
DS	
DSM	
DI2	
STT	
EDT	
LSM	
OA1	
OA2	
CD	
INP	
OS1	(X) / 1.8
T2	
OS2	(X) / 1.8
T3	
OS3	(X) / 1.8
TLD	
TDS	
AVG	
SIM	
ADR	

ontroller			BIT25
	SPL	(X-32) / 1.8	
eed to be	SPH	(X-32) / 1.8	
	SP	(X-32) / 1.8	
<u>S.</u>	HYS	(X) / 1.8	
1	CRT		
	CT1		
	€ ₽ ₽		
es F	CSD		
	DFM		
	DFT		
	DFB		
	DLI	(X-32) / 1.8	
	DTO		
	DTY		
	DPD		
	DRN		
	DDM		
	DDY		
	FID		
	FDD	(X-32) / 1.8	
	FIO		
	FCM	00/10	
	FDI	(X) / 1.8	
	FUH	(X) / 1.8	
	FT1		
	F12 ET2		
	Г13 АТМ		
		(Y-32) / 1.8	
		(X-32)/1.0	
	ALR	(X) / 1 8	
	AHR	(X) / 1.8	
	ATI	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	ATD		
		E	BIT25 Heat
	SPL	(X-32) / 1.8	
	SPH	(X-32) / 1.8	
	SP	(X-32) / 1.8	
	СМ		
	HYS	(X) / 1.8	
	TON		
	TOF		
	PB		
	IT		
	DT		
	AR		
	СТ		
	PF		
	HSD		
		(V 22) / 4 2	
		(X - 32) / 1.8	
		(X)/1.8	

AHR

ATD

(X) / 1.8

ADO	
AHM	
AHT	(X-32) / 1.8
ACC	
IISM	
IISL	(X-32) / 1.8
IISH	(X-32) / 1.8
IISP	(X-32) / 1.8
IIHY	(X) / 1.8
lifC	
lidf	
SB	
DI1	
DI2	
T3M	
OS3	(X) / 1.8
PSL	(X-32) / 1.8
PSR	(X-32) / 1.8
POF	
LSM	
OA1	
OA2	
051	(X) / 1.8
T2	
OS2	(X) / 1.8
TLD	
SCL	1C
SIM	
ADR	

Heatin	g	
	ADO	
	SB	
	DI1	
	DI2	
	PSL	(X-32) / 1.8
	PSR	(X-32) / 1.8
	POF	
	DSM	
	LSM	
	OA1	
	OA2	
	OS1	(X) / 1.8
	TLD	
	SCL	1C
	SIM	
	ADR	

Per our design or control version, highlighted Parameters may or may not be displayed.

Parameters list settings are subject to change without prior notification.

Model specific parameters settings are on separate pages.

Per our design or control version, highlighted Parameters may or may not be displayed.

Parameters list settings are subject to change without prior notification.

Model specific parameters settings are on separate pages.

362-MUD	L	90 20	10	REF	18	e	2 8	-	MIT	9	11.0	15.0	22.0	NONE	60	30	BLE	e e	, DEF	5	N	-5	o MIL	-20	30	5	ę.	NON	0	•	0	0	11 EN	5	NON	0	0	NON	0	-16	18	WIL	- 4	YES	YES	STP	NON		MAN	LGT	61	0	0	YES	0 NON	0	5		0	-							
GDM-40F	4	-20	10	REF	18	3	20 20	-	MIT	9	11.0	15.0	22.0	NONE	60	30	ELE	30	DEF	5	ON	ę,		-20	30	5	10	NON	0	0	0	0	11 en	8 5	NON	0	0	NON	10	-16	18	MIT	- 4	YES	YES	STP	NON		MAN	LGT	61	0	0	YES	0 NON	0	5		0	F							
GDM:40	4	20	45	REF	18	0	30	0	TIM 🔦	8	11.0	15.0	22.0	NONE	45	20	OFF	30	DEF	10	YES	140	- ML	-20	30	0	÷.	NON	0	0	0	0	11 en		NON	0	0	NUN	45	23	18	TIM	- 4	YES	NO	NON	NON		MAN	LGT	2CU	0	0	YES	0 DSP	0	5		3	-							-
-28 GDM-43E	u.	-20	10	REF	18	3	9	-	MIT	9	11.0	15.0	22.0	NONE	80	30	ELE	8	, DEF	3	NO	9	- III	-20	30	180	Q.	NON	0	•	0	0	11 en		NON	0	0	NON	01	-12	18	WIL	- u	YES	YES	STP	NON	-	MAN	LGT	-1	0	0	YES	o NON	0	5		0	-							deals ad the stand
tings for AR2-	4	-20	10	REF	18	6	20	-	TIM	9	11.0	15.0	22.0	NONE	80	30	ELE	30	DEF	5	NO	9	1	067	30	180	10	NON	0	0	0	0	11 BN		NON	0	0	NUN	10	-15	18	TIM	- u	YES	YES	STP	NON		MAN	LGT	-1	0		YES	0 NON	0	5		0	-							and the second s
Controller Set	ц.	-20	10	REF	18	3	20	-	TIM	9	11.0	15.0	22.0	NONE	202	30	ELE	30	DEF	5	NO	÷,	D III	-20	30	5	10	NON	(0	0	0		11 en		NON	0	0	NUN	10	-16	18	TIM	- 4	YES	YES	STP	NON	-	MAN	LGT	0-1	0	0	YES	0 NON	0	5		0	-							District Pickling
	L.	20	45	REF	18	0	90	0	MIT	80 4	11.0	15.0	22.0	NONE	45	20	OFF	30	DEF	10	YES	140	- MIL	20	30	0	9	NON	0	0	0	0	11	- 10	NON	0	0	NUN	45	20	18	MI		YES	ON	NON	NON		MAN	LGT	200	0	0	YES	0 DSP	0	5	- 0	3	+							the of control of
GDM.23F	u.	90.	10	REF	18	9	9 9	-	TIM	9	11.0	15.0	22.0	NONE	50	30	ELE	30	DEF	5	NO	-5 ,	D MIL	20	30	5	01	NON	0	0	0	0	11 en	90	NON	0	0	NON	01	-19	18	MIL	0	YES	YES	STP	NON		MAN	LGT	1-0	0	0	YES	0 NON	0	5	- 0	0	÷							Date and
GDM.10T.F	u.	-15	10	REF	8	3	o 4	, -	TIM	6	11.0	15.0	22.0	NONE	60	40	ELE	120	DEF	40	NO	28	o ML	-2	3	30	4.	NON	0	0	0	0	11 60	5	NON	0	0	NUN	10	-10	8	TIM Î	⊃ e	YES	NO	NON	NON		NON	2CU	2EU	0	0	YES	NON	0	1	- 0	3	-							
GDM-12F	4	-20	10	REF	18	3	20	-	TIM	9	11.0	15.0	22.0	NONE	60	30	ELE	30	DEF	5	NO	Ş,	- M	-20	30	5	10	NON	0	0	0	0	11 en	5	NON	0	0	NUN	10	14	18	TIM	- 4	YES	YES	STP	NON		MAN	LGT	-1	0	0	YES	0 NON	0	5		0	-							
GDM.10F	u.	-20	10	REF	18	8	20	-	MIT	9	11.0	15.0	22.0	NONE	60	30	ELE	30	DEF	5	NO	5	D MIL	20	30	5	10	NON	0	•	•	0	11 en		NON	0	0	NUN	10	14	18	MIT	- 4	YES	YES	STP	NON	-	MAN	LGT	-1	0	0	YES	0 NON	0	9		0	-							
	SCL	SPL	SPH	5	SVH	CRT	56	CSD	DFM	DFT	DH2	DH3	DH4	SH0	DLI	010	DTY	040	NOD	YOO	FID	FDD	10	FDT	HOF	FT1	FT2	713	AIA	AHA	ALR	AHR	ATI	ADO	AHM	AHT	ACC	IISM	HSII	IISP	IHY	IFC	SUN 3	88	08	WSC	012	SIT	rsw	OA1	OA2	8	iso	12	052	083	10	AVG	SIM	ADR							

													_																																																										
S CONL.	u.	-20	5 v	REF	0	9 9	10	3	N at	0.0	0.0	0.0	0.0	NONE	NONE	60	30			DEF	10	NO	5	10	U III	30	12	10	-	NON	32	32	0	ň	:0	0	NON	0	NON	NON 100	10	2 vq	0	TIM	0	9	YES	CTD CTD	NON	0	ő	MAN	LGT	5	1 SNA	0	YES	0	ZEU	5	11	+	•	-							and the state of t
	u.	-20	₽ -	REF	13	m u	10	3	≦ œ	4.0	11.0	15.0	22.0	NONE	NONE	60	e L	ctr.	> 42	DEF	5	NO	5	2		#	5	15		NON			, -	1	60	5	NON	0	NON	NUN IN	-ev	20	13	TIM	0	9	YES	STD STD	NON	0	0	DOR	LGT	scu	0 CN4	0	YES	0	NON	5 40	H	0		-							
	u.	25	45 34	REF	7	ma	21	-	ž u	4.0	11.0	15.0	22.0	NONE	NONE	\$	30	- Cr	> et	DEF	10	YES	80	0		• 8	80	0	0	NON				, it	60	5	NON	•	NUN	NUN	45	35	7	NON	0	9	YES	STD STD	NON	0	0	MAN	LGT	NON	0 CN1	•	YES	0	NON	- 40	F	0	· -	-							C PURCHARA
	u.	25	45 35	REF	2	9	21	-	N a	4.0	11.0	15.0	22.0	NONE	NONE	45	30	- Lo	> er	DEF	10	YES	90 0	0	NON O	, (F	30	0	0	NON	0	0	0	11	60	5	NON	0	NON	NUN N	45	36		NON	0	9	YES	STD STD	NON	0	0	DOR	LGT	NON	0 GNA	0	YES	0	NON	-	H	0	3	-							
STHENG	u.	-20	13	REF	5	e a	10	6	≦ a	4.0	11.0	15.0	22.0	NONE	NONE	60	30		> 42	DEF	5	NO	5	10	NON	• 8	5	15	-	NON				1	60	5	NON	0	NON	NON	-60	? 1	5	NON	0	9	YES	STD STD	NON	0	0	MAN	101	ZCU	CHI	0	YES	0	NON	-	11	0		-							
SLIFE	u.	-20	13	REF	12	e a	10	3	2 2	4.0	11.0	15.0	22.0	NONE	NONE	60	30	cle	- 42	DEF	5	NO	5	10		, 8	5	15	-	NON	0	0	0	14	60	5	NON	0	NON	NON UC	-60	20	12	TIM	0	9	YES VEG	STD STD	NON	0	Ő	DOR	LGT	zcu ž	CN4	0	YES	0	NUN	2	H.	0		-							
ST48.4G	u _	25	45	REF	8	e a	21	-	ž e	4.0	11.0	15.0	22.0	NONE	NONE	45	30	- o	> e*	DEF	10	YES	-90 -	-	-20 1	8	60	£	2	NON	•		> c	× 1	60	\$	NON	0	NON	NON SE	45	2 2 3	8	TIM	0	9	YES	STD STD	NON	0	ò	MAN	LGT	NON	0 SNA	0	YES	0	NON	-	1	0		-							
CT+18.15	u.	25	45 35	REF	5	m 0	21	-	2	4.0	11.0	15.0	22.0	NONE	NONE	\$	30	L C	> et	DEF	10	YES	99 -	•	WI 67	8	60	5	2	NON			, ,	, F	90	5	NON	•	NON	NUN	60 72	35	5	TIM	0	9	YES	STD STD	NON	0	0	DOR	LGT	NON	0 CN4	0	YES	0	NON	5 40	11	0	~ -	-							
	SCL	SPL	Has	5 5	HYS	L L	CT2	CSD	DET	DH1	DH2	DH3	DH4	OHS	OHB	00	010		DRN	MOO	ADD	FID	60	01-1	EDT -	臣	FT	FT2	FT3	ATM	ALA	AHA	AHR	ATT A	ATD	ADO	AHM	AHT	MOL	ISI	HSII	ISP	лни	IIFC	HDS	-IO	20	en usu	012	SIT	EDT	LSM L	OA1	042	Ba	1SO	12	052	13	01	TDS	AVG	NID	NUK							

T 995 9 MO	F	-10	0	9-0	- 2 0	e	9	¢,	RTC	ŝ	5	= :	47	100	NONE	65	30	ELE	0	20	- H	n QN	φ	10	MIT	0	30	0	2 ⊂	NON	0	0	0	•	11	60	9	NON	, a	NON	-10	0	ę	10	WI	- 42	YES	YES	STP	NON	0	0	LGT	0-1	0	SN4	YES	0	0	5	E «		-							
									•											2																																																		Journel
8 cont.																											•																																											a more not he dire
gs for AR2-2	i i	-20	6	-17	ų e	e	10	50	WIL	9	4.0	11.0	10.0	NONE	NONE	09	30	ELE	30	e	ner er	PON	φ	0	WIL	8	30	5	2.	NON	0	0	0	0	11	30	5	NDN	, o	NON	8	10	-19	18	WI	- 42	YES	YES	STP	NON	0	0	LGT	0-1	0	SN4	YES	0	NON O	5	Ξ.	- 0	-							Secondary man
Itroller Settin	1	-20	10	-16	18	e e	10	20	WIL	9	4.0	0.11	0.01	NONF	NONE	60	30	ELE	30	8	UEF.	PON	ęφ	0	MIT	-20	30	9	2.	NON	(0	0	0	TH I	60	5	NON		NON	-20	10	-16	18	WI	- 42	YES	YES	STP	NON	0	0 MAN	LGT	0-1	0	SN4	YES	0	NON O	5	E ¢		-							I holidade de la comparte
LAE Cor	-	-20	10	-19	18	6	10	20	WIL	9	4.0	0.11	10.0	NONE	NONE	60	30	ELE	30	2	ner e	e ON	ęφ	0	MIT	-20	30	5	₽.	NON	0	0	0	0	11	60	9	NON	, 0	NON	-20	01	-19	18	IIM		YES	YES	STP	NON	0	0	LGT	0-1	0	the c	YES	0	0	5	τ.	0	-							- Instant or another
195	i i	-20	20	-10	1	e	10	50	WIL	80	4.0	0.11	10.0	NONF	NONE	09	30	ELE	30	4	ner er	PON	ęφ	0	MIT	-50	30	5	2.	NON	0	0	0	0	11	60	5	NON	f -	NON	8	20	-10	16	WI	0 4	YES	YES	STP	NON		0	LGT	20.0	30	SNA	YES	0	NON O	e	1		-							Dor our c
1 9960	F	-20	10	-14	18	9	10	20	TIM	9	4.0	0.11	19.0	NONF	NONE	05	30	ELE	30	8	UEr.	P	ę w	0	MIT	-20	30	5	2.	NON	0	0	0	0	11	60	9	NON	, o	NON	82	10	-19	18	WI	-	YES	YES	STP	NON	0	NAM	LGT	0-1	a	SN4	YES	0	NON D	4	E .		-							
2001	F F	-20	0	-12	10	e e	9	10	MIL	9	4,0	0.11	19.0	NONF	NONE	65	30	ELE	0	8	0Er	e QN	ę w	10	MIT	0	30	•	21	NON	0	0	0	•	11	60	9	NON	, o	NON	-20	0	-10	10	WI		YES	YES	STP	NON	0	0	LGT	0-1	0	SN4	YES	0	0	5	₽.		-							
0.001	L ISI	-20	e :	-14	18	e e	10	20	TIM	9	4.0	0'11	19.0	NONE	NONE	60	30	ELE	30	m	, CE	e Q	ę ię	•	MIT	-20	30	5	2.	NON		•	•	•	11	60	9	NON	>	NON	-20	10	-14	8	WI	- u	YES	YES	STP	NON	•	0 MAN	LGT	0-1	0	SN4	YES	0	0	5	F,		-							
	SCL	BPL	HdS	5	SYH	CRT	CT1	CT2	DFM	DFT	DH1	CH0	CHU CHU	t HC	DHB	DI	010	DTY	0P0	ORN	MOD		FOD	FTO	FCM	FDT	HOT	E	212	ATM	AIA	AHA	ALR	AHR	ATI	ATD	ADO	AHM	ACC	WSII	IISL	HSII	IISP	٨H	DIEC	- HDF	195	8	USM	DI2	STT	EDI	CA1	OA2	8	dN SO	24	082	630	01L	105	SIM	ADR							

37

	SIM2F-2S	-50	10	0	đ	3	9	≥e	MIT	9	11.0	15.0	22.0	NONE	NUNE	30	ELE	0	9	EF.	- Q	2	10	MIT	0	30	5	2 -	NON	0	0	0	0	H	60	6	NON		NON	-20	10	0	13	WIL	- u	YES	YES	STP	NON	0	0	DOR	102	000	SN4	0	YES	NON	0	5	= =	> m	-								
	STM1F-1S F	Ŗ	13	0	12 KEF	e e	φŝ	e	MIT	9	11.0	15.0	22.0	NONE	NONE	80	ELE	0	9	, DEF	- Q	2	10	MIT	0	30	5	₽-	NON	0	•	0	•	H	60	6	NON		NON	87	13	0	12	WIL	- u	YES	YES	STP	NON	0	0	DOR	501	0	SNA	0	YES	NON	0	5	= <	, m	-								
																																																																							-
cont.											Ī																																																												dents and the stimula
s for AR2-28											Ī																																		Ī																										an more more on
troller Setting																													(amine highlited De
LAE Cor																																																																							to los or control of
	T'ZFRI-ZS	-25	10	-10	đđ	3	10	3	WIL	9	11.0	15.0	22.0	NONE	NONE	30	ELE	30	3	0EF	n (V	24	0	MIT	-20	30	0	2.	NON	0	0	0	0	11	60	9	NON		NON	52	10	-8	16	WIL		YES	NO	NON	NON	0	0	MAN	101	50	SN4	0	YES	DSP	0	5	=	0	-								Dor our d
	1"2F-25 F	21-	10	11	46 F	è e	10	2+	TIM	9	11.0	15.0	22.0	NONE	NONE	98	ELE	0	3	, DEF	- Q	2		MIT	-20	30	180	o -	NON	-500	1200	0	0	11	60	6	NON	000	NON	-11-	10	-11	16	WIL	• u	YES	YES	STP	NON	0		DOR	191		SN4	9	YES	NON	0	5	=	0 m	-								
	1"2F-2G	-52	10	8 [,]	¢	3	10	3 6	MIT	9	11.0	15.0	22.0	NONE	NONE	30	ELE	30	3	0EF	n 🖓	24	0	MIT	-20	30	5	2.	NON	0	0	0	0	11	60	0	NON		NON	52	10	-8	10	WIL	- 4	YES	YES	STP	NON	0	0	MAN	5	8	SN4	0	YES	NON	0	5	= =		-								
	1-11-1S	-15	15	6,	42 F	e e	10	2 40	MIT	9	11.0	15.0	22.0	NONE	NONE	98	ELE	30	e	E.	- 0	2	0	MIT	-20	30	180		NON	0	•	•	•	T1	60	6	NON	-	NON	-15	15	-8	12	WI		YES	YES	STP	NON	0	0	DOR	19	50	SN4	0	YES	NON	0	5	-		-	ĺ							
	SCL	SPL	HdS	8	HAS	CRT	CT1	CSD	DFM	110	CHO	CHO	0H4	B	eH0	DTO	DTY	0H0	DRN	MOD		201	FTO	FCM	FDT	HO	E	112	ATM	ALA	AHA	ALR	AHR	ATI	ATD	NON I	AHM	004	WSI	IISI	HSII	IISP	λHI	IFC	- SUL	1 55	8	MSC	012	STT	EDT	LSM DM	540	38	dN	081	12	13	083	0,T	105 M/C	SIM	ADR								

																																																																	_
	STM2R-2S	45	33	2	en	6	12	WILL	9	A5	30	OFF	0	3	- Per	YES	06	0	MIL	0	n (g	5 un	2	NON	89 OG	007	0	11	60	5	NON	2	NON	-13	11	4 10	NON	9	YES	DOR	NON	20	23	18	YES	010	PAN 10	30	YES	0	2	u.	en +	-											
	STM1R-1S	45	33	2	e	6	2	WILL	9	NU AK	30	OFF	0	3	UE-	YES	06	0	MIT		n (e	5 w	2	NON	89 Oct	007	0	H	60	5	NON	0	NON	-13	11	4 10	NON	9	YES	DOR	NON	0	23	18	YES	010	PAN	30	YES	0	2	u.	e -	-											have
25																																																																	may not he diente
tings for BIT:											Ī						Ī																				Ī																												ramatara may ar
Controller Set	TAC-48	32	28	18	e	10	n 0	MIT	3	A5	30	OFF	0	0	20	ÝES	23	0	NON	?	n (g	5 m	0	NON	89	002	0	H	60	5	NON	Nu.	NON	20	38	28	NUN	9	YES	NON	NON	0	23	18	YES	MAN	PAN	50	YES	0	5	u.	e -	-											anion hinhlited Do
LAE (TAC-36	38	31	18	e 1	10	. 0	MIT	9	4K	30	OFF	0	0	- n	YES	23	0	NON	? -	n (e	5 m	0	NON	89 ou	020		H	60	5	NON		NON	20	38	31	NON	9	YES	NON	NON	0	23	18	YES	MAN	TAN	9	YES	0	5	u.	e -	-											acian or control ve
	TAC-14GS	38	3 8	18	e 1	10		MIT	9	4F	30	OFF	0	0	- nc	YES	23	•	NON	? ×	n (;	5 m	0	NON	89 au	0	• •	H	60	5	NON		NON	20	38	31	NON	9	YES	NON	NON		23	18	YES	MAN	TO	191	YES	0	9	3	e	-											Dor Air d
																	Ī									Ī	Ī										Ī																												
	GDM-72	12	24	18	e ;	0	2.	WIL	9	AK AK	30	OFF	0	3	- P	YES	23	0	WIL	?	081	<u>3</u> un	-	NON	89 GG	000	0	H	60	5	NON	0	NON	15	45	24	MIL	9	YES	NON	NON	0	23	18	NO	MAN	COL	NA C	YES	0	5	u.	en •	-											
	cpi	SPH	sp	HYS	CRT	515	CSD	DFM	DFT	80	DTO	DTY	0H0	DRN	MUN	CI	FOD	FTO	FCM	LO4	5	12	FT3	ATM	ALA	ALR	AHR	ATI	ATD	ADO	AHM	ACC	WSII	IISL	HSII	ISP I		IDF	88	10	212	eso	PSL	PSR	POF	LSM DM	ENO.	DS1	21	082	01	SCL	SIM	VIN											

																																																					aved.
IT25 Heating																																																					may not be display
Series for B																																																					arameters may or
Settings Spec																																																					ersion. highlited P
E Controller S																																																					esian or control v
LAE																																																					Per our d
	87:HZ.19	180	180	OL -	0	0	300	50	90	OFF	20	NON	4 c	, o	0	0	5	NON	NON	0	0	Q	STP	0-1	0-1	0	5	u_ 0		-																							
	SI-HL18	180	180	OId -	0	0	300	20	90	OFF	20	NON	4	0	0	0	5	YES NON	NON	0	0	Q	STP	-1-0	-1-0	0	5	i . a		-																							
	do D	HdS	с	OM	TON	TOF	e 🖿	DT	AR	đ	OSH	ATM	ALA	ALR	AHR	ATD	ADO	8 2	012	PSI	PSR	POF	DSM	COM1	OA2	0S1	01L	SCL	SIM	ADK																							

40

																																																				_																									+	+	
Jue Mar	1000	-20	10	-16	REF	20		10	02		10	TIM	9	2	-	5	22	NONE	NONE	60	30	ELE	5			DEF	\$	NO	9	5	WIL	8	30	5	₽.		NON	0	•	•	•	11	60	NON SE	ę.	5 4 ¹	e e	2 0	10	9	MIT	•	VES	STP	5	-	NeO	NON	NdO	MAN	NdO		LGT	5	NON	0	•	YES	NON	0	NON	•	5	11	0	u. c	•	- 01	2
201 1100	0000-101	-20	10	-16	REF	20		10	02	••	10	MIT	9	ON T	• =	15	22	NONE	NONE	60	30	ELE		8	en	DEF	2	NO	-2	0	MIT	Ŗ	30	5	₽.		NON	0	•	•	•	11	60	NUN	e e	51- 14-	e #	20	10	9	MIT	•	VFS	STP	5	-	NOO	NON	NGO	MAN	OPN		LGT	5	NON	0	0	YES	NON	0	NON	•	5	11	0	u. c	•	- 01	24
of they		20	45	23	REF	90	0	10	30	0	10	WIL	8	DN .		15	22	NONE	NONE	45	20	1-0	-	. 8	en	DEF	10	YES	140	-	MIT	07-	30	0	5		NON	0	•	0	0	T1	60	NUN	20 45	24	9	2 0	10	9	MIT		VES	NON	5	0	NON	NON	NdO	MAN	NHO		LGT	2CU	NON	0	0	YES	nsp	0	NON	0	5	T1	0	.u. e	<i>m</i> •	- 01	lavari
1-28		-20	10	-17	REF	0		10	02 0	0	10	MIT	9	DN T	• =	: 12	22	NONE	NONE	- 50	30	ett. Aee	1	08	E	DEF	5	NO	-5	0	MIT	8 <u>2</u>	8	180	₽.		NON	0	0	0	0	11	60	NON	ę.	44	-	2 0	10	9	MIT	0	VES	STP	5	-	NdQ	NON	NdO	MAN	NHO	0	LGT	6-1	NON	0	0	YES	NON	0	NON	0	5	11	0	u. c		- 01	v may not be disp
tings for BR	00m-30r	-20	10	-15	REF	0	er	10	02	, 0	10	MIT	9	ON a	• =	15	22	NONE	NONE	50	30	ELE	-	8	3	DEF	5	NO		0	WIL	Ŗ	80	180	ę.		NON	0	0	0	0	11	60	NON	e,	145	e 🛱	2 0	10	9	MIT	0	VFS	STP	5	+	NdO	NON	NdO	MAN	NHO		LGT	0-1	NON	0	0	YES	NON	0	NON	0	5	11	0	u. c	•	- 01	Paramaters may 0
Controller Set	1	-50	10	-14	REF	0	8	10	50	, o	10	TIM	9	02	- =	15	22	NONE	NONE	50	30	ELE		. 8	en	OEF	5	NO	9	0	MIT	87	30	5	10		NON	0	0	0	0	11	● 60	NUN	-sa	-46	2 8	2 0	10	9	TIM		VES	STP	5	1	NeO	NON	NGO	MAN	NdO		LGT		NON	0	0	YES	NON		NON	0	5	11	0	u. e		- ON	areion hinhlitad E
LAE (1	20	45	20	REF	0	0	10	30	, o	10	MIT	80	ON .	• =	15	22	NONE	NONE	45	20	OFF	1	900		DEF	10	YES	140	-	MIT	8	30	0	5		NON	0	0	0	0	-H	60	NUN	- K	30	18	0	10	8	WILL	0	VES	NON	5	0	NdO	NON	NdO	MAN	NHO		LGT	ZCU	NON	0	0	YES	o deb	0	NON	0	5	11	0	u. e	20 -	- ON	tesion or control v
100 1000	102-000	-20	10	-14	REF	0	9	10	20	, o	10	MIL	9	0	• =	15	22	NONE	NONE	50	30	ELE	100	908	en	DEF	9	NO	9	0	MIT	8	30	2	9.	- 0	NON	0	0	0	0	11	60	NUN	-50	01	18	20	10	9	Wit		VEG	STP	5	1	NeO	NON	NdO	NWN	NHO	0	LGT		NON	0	0	YES	NON	NOV O	NON	0	5	11	0	u. c		- ON	Par our c
2.000	1	-20	10	-14	REF	0	6	10	20	0	10	TIM	9	NO	11	15	22	NONE	NONE	50	30	ELE	22	. 66	6	DEF	5	NO	-5	0	TIM	8 <u>-</u>	30	5	9		NON	0	0	0	0	T1	60	NON	-50	-10	8	2 0	10	6	MIT	0 0	VES	STP _	5	1	Net	NON	OPN	MAN	NHO	0	LGT	0-1	NON	0	0	YES	NON	0	NON	0	5	T1	0	úL C	0.	NO	~
301 1100	1	-20	10	-14	REF	20		10	02	, .	10	MIT	9	Q.	- =	15	22	NONE	NONE	60	30	ELE	-			DEF	5	ON	-5	0	MIT	8	30	5	₽.		NON	0	0	0	0	11	60	NON	ę.	1	9	2 0	10	9	MIT		VES	STP	5	-	Neo	NON	NdO	MAN	NHO		LGT	0-1	NON	0	0	YES	NON	0	NON	0	5	11	0	u. c		- 01	2
201 1000	1	-20	10	-14	REF	20		10	02		10	MIT	9	DN ON	11.0	15.0	22.0	NONE	NONE	60	30	ELE				DEF	2	NO	-5	0	MIT	8 ²	30	5	₽.		NON	0	•	0	0	T1	60	NON	-sa	1	-	2 0	10	9	MIT		VES	STP	5	-	NdQ	NON	NdO	MAN	NHO	00	LGT	-1-0	NON	0	0	YES	NON	0	NON	0	5	11	0	u. c		- 01	2
	MDL	SPL	HdS	с SP	B	HV1	CRT	CT1	CIS	Ĕ	ΗL	DFM	0FT	910	DH2	DH3	0H4	DHS	DH6	DU	010	10	COD O	OPD	DRN	MOO	700	FID	FDD	FTO	FCM	101	Ho	E	21	C10	ATM	AIA	AHA	ALR	AHR	ATI	ATD	IISM	IICH	dSI	OHI	H	IHT	IIDF	IIFC	ECS E	P 8	DSM	DAD	CSD	DID DID	020	D2A	LSM	LSA	EDT	0A1	OA2	OA3	200	08i	12	200	083	14	0S4	TLD	TDS	AVG	SCL	SIM	RS	2011

																																																																													Q
																																																																													D
																																																																													Ŋ
																																																																													N
																																																																													NU
1-28	1 10	-20	10	-5 000	10	0	e a	10	0	0	01		NO	0	0	•	0		en	30	ELE	OFF	0	0	9	ler e	e Viv	5	, e	TIM	0	30	9	10	-	0	NUN	32	0	0	11	0	NON	-20	2 9	9	0	10	9	MIT	- 08	YES	STP	5	3	NOO	DOR	OPN	MAN	000	0	LGT	0-1	2CU	-	0	- 15	OTP	0	DSP	0	5	-	u	0	-	r may not he disn
ttings for BR ⁴	1 10	-20	10	000	13	0	en u	10	0	0	DI NU	- a	NO	4	11	15	22	NONE	NUNE	30	ELE	OFF	5	0	9	1 III		1	01	TIM	•	30	5	15	-	0	NON	, o	0	0	11	60	NUN	-50	20	5	20	10	9	MIT	-	YES	STP	5	8	NdO	NON	NdO	HO NOV	NLO	0	LGT	2CU	NON	0	0	9	NON	0	NON	0	50 J	: 0	5 UL	, m	-	NU Paramatare may o
Controller Set	1	25	45	35	7	0	ma	s 12	0	0	2 ML		NO	4	11	15	22	NUNE	NONE	30	OFF	OFF	5	0	m 1	0EF	NEC	90	80	NON	0	30	30	0	0	0	NUN	, 0	0	0	→ 11	60	NUN	9	35	2	. 0	10	9	NON		YES	STP	5	1	NdO	NON	NdO	MAN	NLO O	0	LGT	NON	NON	0	0	d La	NON	0	NON	0	n j		5 U.	, m	-	NU Pareinn hinhlitad E
LAE (1	25	45	35	7	0	ma	21	0	0	2		NO	4	11	15	22	NUNE	NUNE	30	OFF	OFF	5	0	m 1	10LF	NEC	90	80	NON	0	30	30	0	0	0	NUN	, o	0	0	11	60	NUN	8	35	L	0	10	9	NON	-	YES	STP	5	-	NGO	NON	NdO	HO	NLO O	0	LGT	NON	NON	0	0	- LC	NON	0	NON	0	n j		5 UL	. 00	-	NU Asian or control v
	01-JI 10	-20	13	4 0	μų.	0	m u	10	0	0	DI MI	i a	NO	*	11	15	NONE	NONE	NUNE	30	ELE	OFF	9	0	9	E.	e Vi	2	, e	NON	0	30	9	15	-	0	NON	, -	0	0	11	60	NON	10- 10-	2 1	r un	0	10	9	NON		YES	STP	5	900	NdO	NON	OPN	MAN		0	LGT	2CU	NON	0	0	- 15	NON	0	NON	0	5		s u.	. 0	-	Der Olir o
01 21020	ei-11 10	-50	13	000	12	0	m u	• 0	0	0	DI MIL		NO	*	11	15	22	NUNE	NUNE	30	ELE	OFF	5	0	9	e Fr	e Vi	2 4	• =	MIL	0	30	9	15	-	0	NON	, -	0	0	11	60	NON	07- 14	20	5		10	9	WIL		YES	STP	5	3	OPN	NON	NHO	DI1		• •	LGT	2CU	NON	0	0	- 12	NON	0	NON	0	5		s u.	. 6	-	DN
0.000	1	25	45	34	8	0	9	a 21	0	0	01	9	NO	4	11	15	22	NUNE	NUNE	30	OFF	OFF	5	0	8	UEr 40	VEG	-50	30	MIT	-20	30	60	5	2	0	NUN	, o	0	0	11	60	NUN	20	34	5 00	0	10	9	MIT		YES	STP	5	1	NOO	NON	OPN	MAN	N LO	0	LGT	NON	NON	0	0	152	NON	0	NON	0	5		s u.	3	-	DN
		25	45	35	5 5	0	ma	s 12	0	0	OI NI		NO	4	11	15	22	NONE	NONE	30	OFF	OFF	5	•	m	ter te	VEG	-50	30	WIL	-20	30	60	5	2	0	NON	> 0		0	11	60	NUN	62	35			10	9	MIL		YES	STP	5		NHO	NON	OPN	0H		•	LGT	NON	NON	0	0	- 12	NON	0	NON	0	5		5 UL	. 67	-	D
	MDL	SPL	SPH	5 Z	DVH	HY1	CRI	CT2	HRT	Ĕ	E NGO	DFT	DFB	DH1	DH2	DH3	0H4	GHO	aun o	DTO	0TY	080	soD	0H0	ORN	MUD	100	EDD -	FIO	FCM	FOT	FOH	ET.	FT2	FT3	FMS	AIN	AHA	ALR	AHR	ATI	ATD	IISM		dSI	OHI	HI	THI	IIDF	IFC	C La	58	MSC	DAD	CSD	DIA	020	D2A	LSM LSM	CT10	EDT	0A1	OA2	OA3	200	88	12	13	083	T4	054	2	AVG	sot	SIM	ADR	FKS

	T-23F-2-MC	-10	0	-9	REF	20	0	9	10	0	• •	RC	5	, ON	2 47	1	14	17	20	NONE	65	30	ELE	10	• •		DEF	5	NO	-5	10	TIM	0	30	•	10	0	0	NON	0	0	0	0	1	: 09	NON	-10	20	ą	10	0	10	9	MIT	0	0 ALLO	CT0	5	8	DOR	NdO	NON	N-D	NdO			LGT	0-1	NON	0	0	YES	0	NUN	NON	0) un	11	0	L1. (0	- 0	2
																																																																																			layed.
-28																																																																																			r may not be disp
tings for BR1	1-72F	- 67	10	-17	REF	2 -		10	20		•	WL	a a	, on	4	=	15	22	NONE	NONE	60	30	ELE	ALL N	8	3	DEF	5	NO	5	0	TIM	-20	30	5	10	-	•	NON	•	•	•		1	: @	NON	-20	10	-19	18	•	10	9	TIM	•	VEC	c to	10	-	DOR	OPN	NON	N N	NdO		, -	LGT	0-1	NON	0	0	YES	0	NON	NON	0	a n	ĥ	-	ш. (- 0 _N	arameters may or
ontroller Set	T-49FG	- 67	10	-16	REF	0 0	0	10	20	0	• •	MIT	a	Ņ	-	11	15	22	NONE	NONE	60	30	ette	5		en	DEF	5	NO	-5	0	MIT	-20	30	2	10		0	NON	0	0	0	0		60	NON	-20	10	-16	18	0	10	6	MIT	0	U O	CT0	210	-	DOR	NdO	NON	NUC	NHO		, c	, LGT	0-1	NON	0	0	YES	0	NON	NON	0) un	ň	0	u., 1	•	- ^{CN}	rsion, highlited P
LAE C	1-49F	- 67	10	-19	REF	2 -	m	10	20			MI		, QN	4	ŧ	15	22	NONE	NONE	60	30	ELE	5	- 8	m	DEF	5	NO	-5	0	MIT	-20	30	2	9	-	•	NON	0	0	0			60	NON	20	10	61-	18	0	10	9	MIT		vee	c 10	10		DOR	NdO	NON		NdO		, -	LGT	0-1	NON	0	0	YES	0	NON	NON	0		ų	0	ш. (-	- 9	sign or control ve
	1-43F	- 6	20	-10	REF	2 0	0	10	20	0	•	ML		, ov	2 4	=	15	22	NONE	NONE	60	30	ELE		. 8	-1	DEF	5	NO	-5	0	TIM	-20	30	2	10	-	•	NON	•	•	•		, F	: 09	NON	-20	20	-10	16	•	10	6	WIL		0	7E3 CTB	210		DOR	NdO	NON	200	NeO		, -	ret	2CU	NON	30	0	YES	0	NON	NON	100	> m	Ч	0	u. :		- 01	Per our de
	T-23FG	- 67	10	-14	REF	2 ⊂	0	10	20		- ÷	WIL	a	, q	-	ŧ	15	22	NONE	NONE	50	30	ELE	5		m	DEF	5	NO	-5	0	MIT	-20	30	2	0	-	0	NON	•	•	•	0		: 08	NON	-20	9	-19	18	0	10	9	MIT		VEC	CT0	10		DOR	NHO	NON	NIN	NHW			LGT	0-1	NON	0	0	YES	0	NON	NON	0	5 40	, H	0	ш. (-	- C N	2
	1-23F	- 67	0	-12	REF	20	0	9	10	0	• •	MIL		VES	4	Ŧ	15	22	NONE	NONE	65	30	ere	10	, .		DEF	5	NO	-5	10	MIT	0	30	•	10	•	•	NON	•	•	•		, E	: 09	NON	-20	0	-10	10	•	10	9	MIT	0	0 AEG	cro cro	10	0	DOR	NdO	NON	N IO	NeO		, -	ĹĞŢ	-1	NON	0	0	YES	0	NUN	NON	0) un	, L	t.	u.)	-	- 0	2
	T-12FG	- 67	10	-14	REF	2 -	0	10	20			MI	4	, QV	-	+	15	22	NONE	NONE	60	30	ELE	5		m	DEF	5	NO	-5	0	MIT	-20	30	-0	10	-	0	NON	0	0	0	0		: 09	NON	-20	10	-14	18	0	10	9	MIT		VEC 0	c lo	10		DOR	NGO	NON	NUO	NHW		, c	LGT	0-1	NON	0	0	YES	0	NON	NON	0		H	0	ш. (-	- 4	2
	i din	SPI	SPH	es s	H CA	C FA	CRT	C11	CT2	HRT	= 5	DFM	DET	DEB	H	DH2	0H3	0H4	OHS	DHG	DC	DTO	10	COD O	OPO	DRN	MOO	λOO	FID	FDD	FTO	FCM	FDT	FOH	FT4	FT2	FT3	FMS	ATM	ALA	AHA	ALR	AHR	ATI	ATD	ISM	IISL	HSII	IISP	OHII	HI	IHI	IDF	IIFC	S. F	50	00 USM	DAD	cso	010	DIA	020	100	Low	SIT	EDT	OA1	OM2	OA3	200	8	12	052	13	14	0S4	91	TDS	AVG	SCL	SIM	NUM	LIN

	STM2F-2S	- 8	8	20	REF	13	0 0		10	0	0	10	MIL	9	ON .	4	=	61	27	NONE	2020	30	, u	OFF	5	0	9	DEF	\$	ON	ş	10	MIT	0	30	-	4	2 +		NON					0	F	60	NON	8	10	→ \$	13	•	2 0	MIT	0	0	YES	STP	0	900	NdO	NON	OPN	01	OPN	0	0	201	NON	0	0	YES	0	NON	NON	NON		,4	0	u.	en :	-	DN
	STM1F-1S	- 8	8	20	REF	12	0	• •	10	0	0	10	MIT	9	N	+ :	= 1	10	77	NONE	- UC	30	u u	OFF	5	0	9	DEF	\$	NO	5	10	MIT	•	30	-17	÷	2 -		NON					0	E a	60	NON	8	13	-	21	- ¢	2 @	MIT	0	0	YES	STP		e ou	NdO	NON	OPN	01	OPN	•	101	201	NON	•	0	YES	0	NON	NON	NON		÷	:0	u.	en i	- 5	N
-28																						Í																																																														factor and the state
tings for BR1																																																																																				
ontroller Set																																																																																				C Partition of Contract
LAE C																																																																																				anion or control up
	T*2FRI-2S	- 2	52 Q	-10	REF	16	0	, p	20	0	0	9	MIT	9	ON .		= 1	2	10	NOVE	and the second	ç (, u	OFF	5	30	en	DEF	2	NO	-2	•	MIT	-20	30	0	ę	2		NON		-		-	0	F	60	NON	52	e •	φ ų	e .	,	2 @	MIL	0	0	YES	NON		NUN	OPN	NON	OPN	MAN	OPN	•	101	5	NON	0	0	YES	0	0SP	NON	NON		o F	. •	u.	0	- !	DN
	T'2F-2S	- :	-11-	-4	REF	16	0	, e	10	0	0	10	TIM	9	YES		0	-				ç g	, u	OFF	5	0		DEF	5	NO	0		MIT	-20	30	180	-			NON	NON	000-	1200		0	E	60	NON	-17	9	i: a	9	•	2 9	MIT	0	0	YES	STP		- 00	OPN	NON	OPN	D11	OPN	•	0	19	NON	30	0	YES	0	NON	NON	NON		P E	:0	u.	6	- [DN
	T1F-15	- 1	-15	2 क	REF	12	0	- 10 -	10	0	0	10	MIT	9	ON .		= 1	10	77	NONE	TO IT	oc us	10	OFF	2	30	en	DEF	-	NO	•	•	MIT	Ŗ	30	180	4	, -		NON		-		-	0	=	60	NON	-15	15	ş	12	•	20	MIL	0	0	YES	STP	0	, au	NdO	NON	OPN	01	OPN	•	0	1-1	NON	0	0	YES	0	NON	NON	NON		⊳£	:0	u.	0		DN
		MDL	SPL	5 55	н	ОЛН	HY1	50	CT2	HRT	Ĕ	Ŧ	DFM	DFT	0FB	H	CHO	SHO SHO			2 2	010	ALL	080	son	0H0	DRN	MOO	YOO	FID	FDD	FTO	FCM	FDT	FOH	1	513	513	FMS	ATM.				ALK	AHR	AT	AID	IISM	IISL	HSI	101	OH	H	- H	IFC	ECS	EPT	88	MSO	DAU	000	DIA	020	D2A	LSM	LSA	2112		CA0	OA3	200	OSI	12	082	13	100	4	t c	TDS	AVG	SCL	SIM	ADR	1KS

WWW.TRUEMFG.COM

LAE Probe	Temperature to Resis	tance Chart
Temp	eraure	Resistance
С	F	K-ohm
-40	-40	195.65
-35	-31	148.17
-30	-22	113.35
-25	-13	87.56
-20	-4	68.24
-15	5	53.65
-10	14	42.51
-5	23	33.89
0	32	27.22
5	41	22.02
10	50	17.93
15	59	14.67
20	68	12.08
25	77	10.00
30	86	8.32
35	95	6.95
40	104	5.83
45	113	4.92
50	122	4.16
55	131	3.54
60	140	3.01
65	149	2.59
70	158	2.23
75	167	1.93
80	176	1.67
85	185	1.45
90	194	1.27
95	203	1.15
100	212	0.97
105	221	0.86
110	230	0.76
115	239	0.67
120	248	0.60
125	257	0.53

LAE CURRENT PROBES

GRAY- Thermostat **BLUE** - Defrost **YELLOW** - Display

LAE PRIOR PROBES

LAE ELECTRONIC CONTROL CHANGE FROM MODEL ARI AND MODEL AR2 TO MODEL BRI.

REASON FOR ADVISMENT: LAE Electronic Control model update will change the display, connecting cable, module,

wiring and programming*.

*Control is pre-programmed from the factory. New control is Universal voltage

NOTE: Below instructions do not pertain to cabinet models with display cable foamed in the wall.

AR2 DISPLAY, CABLE AND MODULE CONNECTIONS

BRI DISPLAY, CABLE AND MODULE CONNECTIONS

DANFOSS ELECTRONIC TEMPERATURE CONTROL GENERAL SEQUENCE OF OPERATION

control probe = return air defrost probe = coil

DANFOSS ELECTRONIC CONTROL <u>REFRIGERATOR WITH DIGITAL DISPLAY</u> GENERAL SEQUENCE OF OPERATION

I. Cabinet is plugged in.

- a. Interior lights will illuminate on glass door models only. If the lights do not come on verify the light switch is in the "ON" position. Solid door cabinets may or may not have lights that may be controlled by the door switch.
- b. Cabinet will start in a Defrost Cycle. The duration for defrost will be a minimum of 4 minutes and a maximum of 60 minutes.
- c. The Danfoss Control Display will illuminate showing "deF".
- 2. The Danfoss control is preprogrammed to initiate defrost every 4 hours of compressor run time. If deemed necessary by the Danfoss control additional defrost may occur at unspecified times.
 - a. At this time the, evaporator fans will continue to run but the compressor will turn off. Some cabinets may also change the rotation of the reversing condenser fan motor.
 - b. Once a preprogrammed temperature of the evaporator coil is reached, the Defrost Cycle will terminate and the 2 minute delay will start.
 - c. After the 2 minute delay the compressor will restart.
 - d. The Danfoss Control Display will continue to show "deF" for an additional 30 minutes.
- 3. The Danfoss control will cycle the compressor and the evaporator fan(s)

on and off determined by the Set-Point and Differential temperatures.

- a. The Set-Point is the <u>adjustable</u> preprogrammed temperature which shuts off the compressor and evaporator fan(s). This is not the programmed cabinet temperature.
- b. The Differential is the <u>non adjustable</u> preprogrammed temperature that is added to the Set-Point temperature that will start the compressor and evaporator fan(s).
- c. The Danfoss control is designed to read and display a cabinet temperature <u>not a product temperature</u>. This cabinet temperature may reflect the refrigeration cycle of the Set-Point and its Differential. The most accurate temperature on a cabinets operation is to verify the product temperature.

Example: If the Set-Point is $34^{\circ}F/1.1^{\circ}C$ and the Differential is $6^{\circ}F/3.3^{\circ}C$ (Set-Point) $34^{\circ}F + 6$ (Differential) = $40^{\circ}F$

Or

(Set-Point) $1.1^{\circ}C + 3.3$ (Differential) = $4.4^{\circ}C$ The compressor will cycle off $34^{\circ}F/1.1^{\circ}C$ and back on at $40^{\circ}F/4.4^{\circ}C$

DANFOSS ELECTRONIC CONTROL <u>FREEZER WITH DIGITAL DISPLAY</u> GENERAL SEQUENCE OF OPERATION

- I. Cabinet is plugged in.
 - a. Interior lights will illuminate on glass door models only. If the lights do not come on verify the light switch is in the "ON" position. Solid door cabinets may or may not have lights that may be controlled by the door switch.
 - b. Cabinet will start in a Defrost Cycle. The duration for defrost will be a minimum of 4 minutes and a maximum of 30 minutes.
 - c. The Danfoss Control Display will illuminate showing "deF".
- 2. The Danfoss control is preprogrammed to initiate defrost every 4 hours of compressor run time.
 - If deemed necessary by the Danfoss control additional defrost may occur at unspecified times.
 - a. At this time, the compressor and evaporator fan(s) will turn off and the evaporator coil heater and drain tube heater will be energized. Some cabinets may also change the rotation of the reversing condenser fan motor.
 - b. Once a preprogrammed temperature of the evaporator coil is reached, or 30 minutes, the Defrost Cycle will terminate and the 2 minute delay will occur.
 - c. After the 2 minute delay the compressor will restart.
 - d. The evaporator fans will remain off for an additional 3 minutes.
 - e. The Danfoss Control Display will continue to show "deF" for an additional 30 minutes.
- 3. The Danfoss control will cycle the compressor and the evaporator fan(s) on and off determined by the Set-Point and Differential Temperatures.
 - a. The Set-Point is the <u>adjustable</u> preprogrammed temperature which shuts off the compressor and evaporator fan(s). This is not the programmed cabinet temperature.
 - b. The Differential is the <u>non adjustable</u> preprogrammed temperature that is added to the Set-Point temperature that will start the compressor and evaporator fan(s).
 - c. The Danfoss control is designed to read and display a cabinet temperature <u>not a product temperature</u>. This cabinet temperature may reflect the refrigeration cycle of the Set-Point and it's Differential. The most accurate temperature on a cabinets operation is to verify the product temperature.

Example: If the Set-Point is $-6^{\circ}F/1^{\circ}C$ and the Differential is $6^{\circ}F/4^{\circ}C$ (Set-Point) $-6^{\circ}F + 6$ (Differential) = $0^{\circ}F$

Or

(Set-Point) -21.4°C + 3.3 (Differential) = -18.1°C The compressor will cycle off -6°F/-21.4°C and back on at 0°F/-18.1°C

DANFOSS ELECTRONIC CONTROL <u>REFRIGERATOR WITHOUT DIGITAL</u> DISPLAY GENERAL SEQUENCE OF OPERATION

- I. Cabinet is plugged in.
 - a. Interior lights will illuminate on glass door models only. If the lights do not come on verify the light switch is in the "ON" position. Solid door cabinets may or may not have lights that may be controlled by the door switch.
 - b. Cabinet will start in a Defrost Cycle. The duration for defrost will be a minimum of 4 minutes and a maximum of 60 minutes.
- 2. The Danfoss control is preprogrammed to initiate defrost every 4 hours of compressor run time. If deemed necessary by the Danfoss control additional defrost may occur at unspecified times.
 - a. At this time, the evaporator fans will continue to run but the compressor will turn off. Some cabinets may also change the rotation of the reversing condenser fan motor.
 - b. Once a preprogrammed temperature of the evaporator coil is reached, the Defrost Cycle will terminate and the 2 minute delay will start.
 - c. After the 2 minute delay the compressor will restart.
- 3. The Danfoss control will cycle the compressor and the evaporator fan(s) on and off together.
 - a. The temperature control is sensing the discharge air temperature.
 - b. The temperature control should be set on the #4 or #5.
 - c. The warmest setting is #1, the coldest is #9, and #0 is the off position.
 - d. The thermometer is designed to read and display a cabinet temperature <u>not a product temperature</u>.
 This cabinet temperature may reflect the refrigeration cycle determined by the temperature control.
 The most accurate temperature on a cabinets operation is to verify the product temperature.

DANFOSS ELECTRONIC CONTROL FREEZER / GC WITHOUT DIGITAL DISPLAY GENERAL SEQUENCE OF OPERATION

- I. Cabinet is plugged in.
 - a. Interior lights will illuminate on glass door models only. If the lights do not come on verify the light switch is in the "ON" position. Solid door cabinets may or may not have lights that may be controlled by the door switch.
 - b. Cabinet will start in a Defrost Cycle. The duration for defrost will be a minimum of 4 minutes and a maximum of 30 minutes.
- 2. The Danfoss control is preprogrammed to initiate defrost every 4 hours of compressor run time.

If deemed necessary by the Danfoss control additional defrost may occur at unspecified times.

- a. At this time, the compressor and evaporator fan(s) will turn off and the evaporator coil heater and drain tube heater will be energized. Some cabinets may also change the rotation of the reversing condenser fan motor.
- b. Once a preprogrammed temperature of the evaporator coil is reached, or 30 minutes,
 - the Defrost Cycle will terminate and the 2 minute delay will occur.
- c. After the 2 minute delay the compressor will restart.
- d. The evaporator fans will remain off for an additional 3 minutes.
- 3. The Danfoss control will cycle the compressor and the evaporator fan(s) on and off together.
 - a. The temperature control is sensing the discharge air temperature.
 - b. The temperature control should be set on the #4 or #5.
 - c. The warmest setting is #1, the coldest is #9, and #0 is the off position.
 - d. The thermometer is designed to read and display a cabinet temperature <u>not a product temperature</u>. This cabinet temperature may reflect the refrigeration cycle determined by the temperature control. The most accurate temperature on a cabinets operation is to verify the product temperature.

USING THE DANFOSS ELECTRONIC CONTROL

ELECTRONIC TEMPERATURE CONTROLS - DANFOSS:

USING A DANFOSS ELECTRONIC CONTROL WITH DIGITAL DISPLAY:

STEP I - Press both buttons to power on the temperature control. See Figure 1.

STEP 2 - Press both buttons and hold for 6 seconds to power off the temperature control. See Figure 2.

STEP 3 - Press bottom button and hold for 6 seconds to defrost. See Figure 3.

STEP 4 - Press and release top or bottom button for 2 seconds to display cut out temperature.

Raise or lower the set point, use the top or bottom to go up or down. Release the button and temperature will go back. See Figure 4.

NOTE: Cut-in temperature is the set point plus the fix differential. See Figure 4.

STEP 6 - Press upper button and hold for 5 seconds to change temperature settings from °F to °C. See Figure 5.

Alarms	Alarm type	Code shown	Value
	Sensor 1 defect	E1	-
	Sensor 2 defect	E2	-
	Compressor fault	E4	-
	Heater fault	E5	-
	Pot fault	E6	-
	Supply voltage low	ULo	-
	Supply voltage high	UHi	-
	High temperature alarm	Hi	Temperature
	Low temperature alarm	Lo	Temperature
	Communication error	E13	-
	Communication errorE13		-

Danfoss Probe Temperature to Resistance Chart

Temperaure		Resistance
С	F	K-ohm
-55	-67	487.89
-50	-58	338.25
-45	-49	237.69
-40	-40	169.16
-35	-31	121.80
-30	-22	88.77
-25	-13	65.34
-20	-4	48.61
-15	5	36.50
-10	14	27.68
-5	23	21.17
0	32	16.33
5	41	12.70
10	50	9.95
15	59	7.86
20	68	6.25
25	77	5.00
30	86	4.03
35	95	3.27
40	104	2.67

